

Introduction to Packaging Engineering

Presented to the Activities Unlimited, Science Club By Harry Bennett October 18, 2016

- •What is Packaging?
- Packaging Technologies
- Focus on Glass
- Focus on Plastic
- Questions

Packaging Engineering is an applied science

All Disciplines of Engineering are Applied Sciences

<u>Engineering – Applied Science</u>	Basic Science
Mechanical Engineering	Physics – mechanics
Electrical Engineering	Physics – electricity and magnetism
Chemical Engineering	Chemistry
Biomedical Engineering	Biology
Packaging Engineering	All of the above plus: Material science Industrial Engineering Project Management Marketing Art and Design Communication skills Manufacturing Distribution

A <u>coordinated system</u> for preparing goods for:

- Transportation
- Distribution
- Storage
- Retailing
- Use
- A package can not exist without a product
- Packaging functions are both technical and marketing oriented

+ What are the Functions of Packaging?

Technica	Functions	\longleftrightarrow	Marketing I	<u>unctions</u>
contain	measure		communicate	promote
protect	dispense		display	sell
preserve	Transport		inform	Motivate
			Connect	Engage
			Empower	Persuade

- Hunter gatherers followed the food source and needed carrying devises:
 - Leaves, animal skins, shells of nuts or gourds, hollow wood, fire carriers
- 5,000 B.C. with some domestication & larger social groups
 - Storage and transport needed
 - Sacks, baskets, bags, wood boxes, clay containers (pottery and ceramic)
- 2,500 1,500 B.C. Glass discovered

Egyptians create core formed glass containers

+ Rome to Renaissance

Cities established, trade expands, armies move

- Existing packaging practices grow in quality and quantity
- 50 B.C. glass blow pipe allows direct formation of hollow glass containers, wood barrel created
- 105 A.D. China's Ts'ai Lun makes first paper from the inner bark of the mulberry tree
- 768 A.D. wood cut printing traced back to Japan
- 868 A.D. oldest existing book, Diamond Sutra, printed in Turkistan

+ Industrial Revolution

An Industrial Society with World Wide Connections

- Rural workers migrate to city factories
- Mass produced goods available, the consumer is born
- Factory workers need commodities and food
- Shops and stores open
- Food needs to be transported to urban areas

Impact on Packaging

- Demand for barrels, boxes, kegs, baskets & bags
- Mechanize the packaging industry to meet demand
- Devise ways to preserve food beyond natural biological life

- City dwellers had limited storage capability and needed to purchase goods and foods in smaller quantities
- Retailers received barrels of goods and sold in smaller units usually taken away by the consumer in their own package (sack).
- Expensive products like medicine, cosmetics, tea and liquor were the first prepackaged goods, sold generically
- Barrels marked with identification of manufacturer were the earliest form of Brand Names

Packaging Technologies studied at Rutgers

- Printing and Decorating
- Environmental and Sustainability Issues
- Paper and Paperboard
- Paperboard Cartons
- Metal Cans and Containers
- Glass Containers
- Polymer Chemistry

- Shaping Plastics
- Plastic Applications
- Closures
- Adhesives
- Flexible Packaging Laminates
- Corrugated Fiberboard
- Distribution Packaging

Glass Packaging

+

<u>Glass</u>

- Inorganic substance, fused at high temperatures
- Cooled quickly, solidifies in a vitreous or noncrystalline condition
- Molecular structure of solid glass is the same as liquid glass
- Cooled glass is so viscous that the mass has become rigid
- Glass has no distinct melting point

Glass Formation

- Silica sand fused with 10% Sodium (Na) compounds (carbonates) -> Sodium Silicate or "water glass" a water soluble glasslike form
- Insolubility is imparted by adding Calcium (Ca) compounds
- Soda-lime-silica (Soda-lime) glass is the type most commonly used for commercial bottles and jars

Typical Soda-lime glass-making ingredients			
Ingredient	<u>% by weight</u>		
Silica sand (silicone oxide)	68 – 73		
Limestone (calcium carbonate)	10 - 13		
Soda Ash (sodium carbonate)	12 – 15		
Alumina (aluminum oxide)	1.5 - 2		

Othor Cla		les mand	for mod	
Other Gla	ass i ypes rare	iy usea	lor bac	Kaging

<u>Type of Glass</u>	<u>Characteristic</u>
Crystal Glass	Lead compounds added to create a soft glass with exceptional clarity and optical properties; perfume bottles
Boron Compounds	Borax, Boron oxide; low thermal expansion, heat shock resistance
Borosilicate Glass	Low extractables; used for critical parenteral drugs (injectable)

Commercial Glass Manufacturing

Glass Blow/Blow Manufacturing

Shaping Plastics

╋

Introduction to Plastics

Polymers

- Raw material for plastics
- Very large molecules
 - Water has 3 atoms, a polymer has hundreds or thousands of atoms
 - Large number of identical repeating monomer units joined together to create a large polymer molecule
- 2 Chemical Classes
 - Thermoplastic
 - Thermoset
- 2 Economic Groups
 - Commodity Polymers
 - Engineering Polymers

- Inject a precise amount of resin into a fully enclosed mold
- Hydraulic pressure drives molten resin through chilled passages (runners) in a mold to fill cavities before the resin solidifies
- Highest cost in plastic shaping
- Leading method for manufacturing closures, thermoplastic tubs, jewel boxes and complex dimensional shapes
- Most dimensionally accurate parts; all surfaces controlled by mold.

Injection Molding Machines

- Mold cavity is in the exact form of the part
- When the part cools, mold opens and part is ejected
- Mold clamp must resist pressure of plastic being injected and open far enough to allow the molded part to be ejected.
- Shot size is the amount of plastic being injected into the mold.

+ Injection Molds

Core and Cavity halves

- Molds can be single or multiple cavities
- Virtually all packaging molds are multi-cavity
- # of cavities will be an even number to allow a balanced system
- Cooling Systems provide mold accurate cooling temperature (water, water-glycol)
- Hygroscopic plastics are pre-conditioned (dried) on line (PET, Nylon, PC)

Figure 10.13 Runner (stationary) plate A three-plate mold that Cavity plate Plug (punch) plate strips sprue and runners Molded part away from the part. Gate Knockout pins push the 0 Runner 0 parts off the cores. Sprue 0 0 0 Plastic from extruder-0 0 0 0 Ο Ο 20 Cooling channels-0 0

Knock-out pins-

Mold closed

Ejector plate

Mold opened

Injection Molding Video

Video Injection Molding

+

Questions?

Thank You

+

And

Have a Good Day